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Abstract

In [1], it is demonstrated that for a partially filled ring (where several
bunches are missing from a symmetric filling) one can find a bound on
the growth rate of instabilities and demonstrate that if a feedback system
stabilizes the system for a symmetric filling, the system is stable for a
partial filling as well. Here, this result is refined to include the case where
all the bunches have different currents ([1] assumes that the non-empty
buckets all had the same charge). In addition, the limitations of the result
(and hence of [1]) are described.

1 Introduction

It is fairly straightforward to find the complex eigenfrequencies of a multibunch
accelerator when all the bunches contain the same amount of charge and are
equally spaced (a symmetric filling). However, in most multibunch machines,
this is not the real situation. It is a good approximation that the bunches all
lie in equally spaced “buckets,” but not all of these buckets actually contain a
bunch. In principle the bunches will all contain slightly different charges. Solving
the eigensystem in this case is a much more formidable task: the size of the
eigensystem solved for a symmetric filling is multiplied by (at least) the number
of bunches, which can be an extremely large number (the LHC has over 2800
bunches and PEP-II has over 1600 bunches).

In [1], Kohaupt makes a significant contribution to the solution of this problem
by demonstrating that one can use the growth rates computed for the symmetric
filling to give bounds on the growth rates when several bunches are removed from
a symmetric filling. In particular, the largest growth rate for a symmetric filling
gives a bound for the growth rates for this partial filling.
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This paper expands on the result of [1] by considering the case where the
buckets can contain any amount of charge. In addition, the proof in [1] is im-
proved upon by indicating more precisely assumptions required for validity, and
demonstrating an important algebraic property of the system (see section 3.2)
needed for the validity of this proof and that in [1].

2 Construction of the Algebraic System

For an accelerator with a linear lattice (partially including first-order chromatic
effects), where each bunch is centered in one of many equally space “buckets,”
one can write down an eigenvalue equation describing the system. A simplified
form of this equation is [2, 3, 4]

Ω−m · ω
ω0

Ψrmb = −i q2β

γmqcL

∑
am′np

Nne
2πip(r−n)/MZ(ωp)kmb(ωp)hm′a(ωp)Ψnm′a.

(1)
The symbols are given by

a,b Radial mode indices, describing the phase-space dependence
of the basis functions in J

c The speed of light
hmb(ω), kmb(ω) Fourier transform of the phase-space basis functions (indexed

by m and b) which are used to expand perturbations to the
distribution. There are also some ω-independent constants
mixed in.

L The length of the ring
M The number of buckets.

m,m′ Azimuthal modes indices, such that the basis function has a
phase-space dependence of eim·θ

mq Mass per particle
Nn Number of particles in bucket n
n,r Indices for bucket number
q Charge per particle

Z(ω) The impedance, more or less. In the transverse case, this
would be β⊥Z⊥(ω), in the longituidinal case, this would be
ω0Z‖(ω)/ω. This can also be the impedance corresponding
to a feedback system [4, 5]

β Speed of the reference particle divided by c
β⊥ Beta-function
γ 1/

√
1− β2

Ω Coherent frequency
ω Incoherent oscillation frequencies
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ω0 Revolution frequency, equal to 2πβc/L
ωp pω0 + Ω

Note that q2βNn/γmqcL is the current in bunch n.
Equation (1) is valid under the following assumptions:

1. The lattice is linear, uncoupled, with dispersion ignored. One allowed ex-
ception is that first-order chromatic effects are treated by assuming that
a constant times the longitudinal displacement is added to the transverse
angle variables (this is the standard treatment of chromaticity [6, 7]).

2. The impedance is smooth, in the sense that if Z(ω) were redefined to include
the dependence of the impedance on the position in the ring, the resulting
function would be independent of s.

3. The buckets are spaced equally around the ring (although some buckets
may be empty, corresponding to Nn = 0).

Allowing coupling or dispersion would probably not invalidate the following der-
ivation, however.

At this point, ignore azimuthal mode coupling (i.e., coupling between modes
with different m). This will be a good approximation as long as the difference
Ω − m · ω is small compared the synchrotron frequency. Then, defining ∆ν =
(Ω−m · ω)/ω0, equation (1) can be written in block matrix form as

∆νψr =
∑
n

NnAr−nψn, (2)

where the vectors ψr have the a’th component Ψrma, and the components of the
matrix Ak are

(Ak)ba = −i q2β

γmqcL

∑
p

e2πikp/MZ(ωp)kmb(ωp)hma(ωp). (3)

Notice that Ak only depends on k mod M .
Note that Ak should also depend on Ω. So that (2) is a true eigenvalue

system, it is useful to assume that Ak is independent of Ω. In practice, this
independence only has to be over a scale comparable to the synchrotron frequency.
This is satisfied in most cases, except when one has an extremely narrow-band
impedance. Such a case arises when one looks at the fundamental mode of the
r.f. cavities (i.e., for analysis of the Robinson instability). The corrections are
typically small, even in this case, however.
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3 Computation of the Eigenvalues

Now, consider an eigenvalue of the equation (2). First, consider the matrix B
whose block components Brn are Ar−n. The eigenvalues of B are the complex
frequency shifts for the symmetric filling when every bucket contains one particle.

3.1 Eigenvalues of B

Consider the eigenvalue system λv = Bv. Equation (3) implies that Brn can be
written as

Brn =
M−1∑
p=0

e2πi(r−n)p/MZp Zp =
M−1∑
k=0

Ake
−2πikp/M . (4)

The definition of Zp implies that

(Zp)ba = −i q2β

γmqcL

∑
p′
Z(ωp+p′M)kmb(ωp+p′M)hma(ωp+p′M). (5)

If one does a change of basis to w such that

wp =
∑
n

e−2πinp/Mvn, (6)

then the eigenvalue equation simplifies greatly to the block-diagonal form λwp =
Zpwp.

Thus, if one has truncated the radial mode expansion such that each vector vn

had dimension K, then an eigenvalue system of dimension MK has been reduced
to M separate eigenvalue systems of size K (note that B has dimension MK,
where Ak and Zp have dimension K). This greatly simplifies the problem if M
is large!

3.2 Normality of B

First, begin by defining the notation and terms that will be used subsequently.
If v and w are vectors,

v†w =
∑
k

v∗kwk, (7)

where vk is the k’th component of the vector v and v∗k is its complex conjugate.
Two vectors v and w are orthogonal if v†w = 0. Similarly, for a matrix A, A† is
the matrix whose components are given by (A†)kl = A∗

lk.
Both the proof in [1] and this proof require that B be normal, which means

that B†B = BB†, where B† is the Hermitian conjugate of B. If B is normal and
finite-dimensional, then this implies that B has a complete set of eigenvectors,
and these eigenvectors are orthogonal [8].
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So, compute B†B and BB†:

(B†B)rn =
∑
k

A†
k−rAk−n =

∑
k

A†
k+n−rAk (8)

(BB†)rn =
∑
k

Ar−kA
†
n−k =

∑
k

AkA
†
k+n−r. (9)

The second equality in each case takes advantage of the fact that Ak only depends
on k mod M . Equations (8) and (9) imply that if Ak and A†

l commuted, then B
would be normal. However, in general they do not commute. If the matrices Ak

were diagonal, however, then the commutation is trivial.
Ak being diagonal implies that coupling between radial modes (Ψrmb with

different b) is ignored. Since these modes all have the same frequency as Nn → 0,
it is not clear that this coupling can be ignored. When the dominant frequencies
in the impedance are small compared to βc/σ`, where σ` is the bunch length, then
one of the eigenvalues of Zp will be much larger (in the sense of absolute value)
than the others. The mode corresponding to this larger eigenvalue will be called
the “lowest radial mode,” whereas the others will be called “higher-order radial
modes.” Ignoring radial mode coupling will have a relatively small effect on the
lowest radial mode (the correction will be comparable to the higher-order radial
mode eigenfrequencies). However, it will have a strong effect on the higher-order
radial modes.

In most cases, a well-chosen basis will make the lowest radial mode have one
component dominant in its vector representation and the other components small,
and this component will be the same for all p. Without loss of generality, this
can be taken to be the first component. Then, in the matrix of Zp, one only
need zero the off-diagonal elements in the first row and column in making the
approximation of ignoring radial mode coupling. To the extent that this does
not perturb the eigenvalue for the lowest radial mode, the approximation is thus
valid.

Thus, from this point B will be considered to be an M ×M matrix, whose
components are constructed by applying the definition of B and (4) to Zp = λp,
where λp is the eigenvalue for the lowest radial mode of symmetric mode p. Since
Zp is a scalar, so is Ak, and B is thus normal. Since B is finite-dimensional by
construction, its eigenvectors are orthogonal [8]. vp will be used to denote the
orthonormal eigenvectors of B in what follows.

3.3 Eigenvalues for the General System

Call N the diagonal matrix whose entries are Nn. Then (2) can be written
as ∆νψ = BNψ. Performing a change of basis to φ = N1/2ψ, the eigenvalue
equation is ∆νφ = N1/2BN1/2φ. Assume that an eigenvalue ∆ν has been found.
There is always at least one eigenvector φ corresponding to that eigenvalue [8].
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The eigenvalue can thus be written as

∆ν =
φ†N1/2BN1/2φ

φ†φ
. (10)

One can write N1/2φ =
∑

p cpvp, where the vp are the basis functions described
in the previous subsection. Thus, since B is normal, (10) becomes

∆ν =

∑
p
|cp|2λp∑

p
|cp|2

φ†Nφ

φ†φ
. (11)

The second fraction in (11) is a real number lying between the smallest Nn

and the largest Nn. As for the first fraction,

min
p

Re{λp} 6

∑
p
|cp|2 Re{λp}∑

p
|cp|2

6 max
p

Re{λp} (12)

min
p

Im{λp} 6

∑
p
|cp|2 Im{λp}∑

p
|cp|2

6 max
p

Im{λp}. (13)

Thus,

min
pn

(Re{λp}Nn) 6 Re{∆ν} 6 max
pn

(Re{λp}Nn) (14)

min
pn

(Im{λp}Nn) 6 Im{∆ν} 6 max
pn

(Im{λp}Nn). (15)

4 Conclusions

The main result consists of equations (14) and (15). Note that the result applies
individually for the lowest radial mode for each azimuthal mode m.

In a real machine, the imaginary parts of the λp are both negative and positive.
Thus, to find a bound on the growth rate

1. Find the bunch with the largest number of particles.

2. Solve the case with a symmetric filling assuming that all the buckets are
filled with that number of particles.

3. Take the largest growth rate.

Because of the definition of the lowest radial mode, this result should apply to
all of the higher radial modes as well.

In the presence of a feedback system which damps all the modes for a symmet-
ric filling, all the modes will be damped in the non-symmetric filling, assuming
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the feedback system has sufficient power to maintain the the same gain in either
case. One must be cautious in applying the the definition of “lowest radial mode”
in this case, since the feedback system can in principle zero the eigenvalue of what
would be the lowest radial mode if there were no feedback (generally this is not
the case: only the imaginary part is reduced, while the real part is uncorrected).
A feedback system which truly nearly zeroed the eigenvalue of the lowest radial
mode would probably invalidate this derivation.

The real parts of the λk all tend to have the same sign. The above argument
gives a bound for the largest real frequency shift. It gives a bound on the smallest
real frequency shift as well by

1. Finding the bunch with the smallest number of particles.

2. Solving the case with a symmetric filling assuming that all the buckets are
filled with that number of particles.

3. Taking the smallest frequency shift.

In particular, if one or more buckets are empty, the shift could in principle be
zero.

To summarize the assumptions required to reach this result:

1. Linear, uncoupled, dispersion-free lattice, with the exception of first-order
chromaticity.

2. Smooth impedance.

3. The bunches are centered in buckets which are equally spaced around the
ring.

4. Ignoring azimuthal mode coupling. This is a reasonable approximation if
the complex frequency shifts are small compared to the synchrotron fre-
quency.

5. Ignore radial mode coupling between the lowest radial mode and all other
radial modes, and assume that a basis can be chosen such that the eigenvec-
tors of the lowest radial mode all have the same dominant component. This
will be a good approximation if the dominant frequencies in the impedance
are low compared to the frequencies in the bunch spectrum.

In summary, this paper has demonstrated that one can find a bound on the
growth rates of multibunch modes when the bunches have arbitrary amounts of
current, subject to certain assumptions. This extends the work in [1], as well as
elucidating some of the assumptions that are required to achieve either result.
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